Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
The local minimum value of the function f(x) = 6 + 9x² - 6x³ is 6 and the local maximum value of the function f(x) = 6 + 9x² - 6x³ is 9.
For given question,
We have been given a function f(x) = 6 + 9x² - 6x³
We need to find the local maximum and local minimum of the function f(x)
First we find the first derivative of the function.
⇒ f'(x) = 0 + 18x - 18x²
⇒ f'(x) = - 18x² + 18x
Putting the first derivative of the function equal to zero, we get
⇒ f'(x) = 0
⇒ - 18x² + 18x = 0
⇒ 18(-x² + x) = 0
⇒ x (-x + 1) = 0
⇒ x = 0 or -x + 1 = 0
⇒ x = 0 or x = 1
Now we find the second derivative of the function.
⇒ f"(x) = - 36x + 18
At x = 0 the value of second derivative of function f(x),
⇒ f"(0) = - 36(0) + 18
⇒ f"(0) = 0 + 18
⇒ f"(0) = 18
Here, at x=0, f"(x) > 0
This means, the function f(x) has the local minimum value at x = 0, which is given by
⇒ f(0) = 6 + 9(0)² - 6(0)³
⇒ f(0) = 6 + 0 - 0
⇒ f(0) = 6
At x = 1 the value of second derivative of function f(x),
⇒ f"(1) = - 36(1) + 18
⇒ f"(1) = - 18
Here, at x = 1, f"(x) < 0
This means, the function f(x) has the local maximum value at x = 1, which is given by
⇒ f(1) = 6 + 9(1)² - 6(1)³
⇒ f(1) = 6 + 9 - 6
⇒ f(1) = 9
So, the function f(x) = 6 + 9x² - 6x³ has local minimum at x = 0 and local maximum at x = 1.
Therefore, the local minimum value of the function f(x) = 6 + 9x² - 6x³ is 6 and the local maximum value of the function f(x) = 6 + 9x² - 6x³ is 9.
Learn more about the local minimum value and local maximum value here:
https://brainly.com/question/15437371
#SPJ4
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.