Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
we verified the intermidiate value theorem applies to the function f(x) = x^2 + 7x + 1 . And the value of c is 2.
According to the given question.
We have a function.
f(x) = x^2 + 7x + 1
As, we know that "the Intermediate Value Theorem (IVT) states that if f is a continuous function on [a,b] and f(a)<M<f(b), there exists some c∈[a,b] such that f(c)=M".
Now, we will apply the theorem for the given function f(x).
So,
f(0) = 0^2 +7(0) + 1 = 1
And,
f(9)=9² + 7(9) + 1 = 81 + 63 + 1 = 145
Here, f(0) = 1< 19< 145 = f(9).
So, f is continous since it is a polynomial. Then the IVT applies, and such c exists.
To find, c,
We have to solve the quadratic equation f(c) =19.
This equation is
c² + 7c + 1 = 19.
Rearranging, c²+ 7c - 18=0.
Factor the expression to get
c² + 9c - 2c -18 = 0
⇒ c(c + 9) - 2( c + 9) = 0
⇒ (c - 2)(c + 9) = 0
⇒ c = 2 or -9
c = -9 is not possible beacuse it is not in the interval [0, 9].
So, the value of c is 2.
⇒ f(2) = 2^2 + 7(2) + 1 = 4 + 14 + 1 = 19
Hence, we verified the intermidiate value theorem applies to the function f(x) = x^2 + 7x + 1 . And the value of c is 2.
Find dout more information about intermidiate value theorem here:
https://brainly.com/question/14456529
#SPJ4
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.