Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Find the nth taylor polynomial for the function, centered at c. f(x) = ln(x), n = 4, c = 5

Sagot :

The nth taylor polynomial for the given function is

P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴

Given:

f(x) = ln(x)

n = 4

c = 3

nth Taylor polynomial for the function, centered at c

The Taylor series for f(x) = ln x centered at 5 is:

[tex]P_{n}(x)=f(c)+\frac{f^{'} (c)}{1!}(x-c)+ \frac{f^{''} (c)}{2!}(x-c)^{2} +\frac{f^{'''} (c)}{3!}(x-c)^{3}+.....+\frac{f^{n} (c)}{n!}(x-c)^{n}[/tex]

Since, c = 5 so,

[tex]P_{4}(x)=f(5)+\frac{f^{'} (5)}{1!}(x-5)+ \frac{f^{''} (5)}{2!}(x-5)^{2} +\frac{f^{'''} (5)}{3!}(x-5)^{3}+.....+\frac{f^{n} (5)}{n!}(x-5)^{n}[/tex]

Now

f(5) = ln 5

f'(x) = 1/x ⇒ f'(5) = 1/5

f''(x) = -1/x² ⇒ f''(5) = -1/5² = -1/25

f'''(x) = 2/x³  ⇒ f'''(5) = 2/5³ = 2/125

f''''(x) = -6/x⁴ ⇒ f (5) = -6/5⁴ = -6/625

So Taylor polynomial for n = 4 is:

P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴

Hence,

The nth taylor polynomial for the given function is

P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴

Find out more information about nth taylor polynomial here

https://brainly.com/question/28196765

#SPJ4

We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.