Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
The most general antiderivative of the given function g(t) is (8t + t³/3 + t²/2 + c).
The antiderivative of a function is the inverse function of a derivative.
This inverse function of the derivative is called integration.
Here the given function is: g(t) = 8 + t² + t
Therefore, the antiderivative of the given function is
∫g(t) dt
= ∫(8 + t² + t) dt
= ∫8 dt + ∫t² dt + ∫t dt
= [8t⁽⁰⁺¹⁾/(0+1) + t⁽²⁺¹⁾/(2+1) + t⁽¹⁺¹⁾/(1+1) + c]
= (8t + t³/3 + t²/2 + c)
Here 'c' is the constant.
Again, differentiating the result, we get:
d/dt(8t + t³/3 + t²/2 + c)
= [8 ˣ 1 ˣ t⁽¹⁻¹⁾ + 3 ˣ t⁽³⁻¹⁾/3 + 2 ˣ t⁽²⁻¹⁾/2 + 0]
= 8 + t² + t
= g(t)
The antiderivative of the given function g(t)is (8t + t³/3 + t²/2 + c).
Learn more about antiderivative here: https://brainly.com/question/20565614
#SPJ4
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.