Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The limit of lim x→[infinity] (5x − ln(x)) by using L'hospital rule is ∞.
According to the given question.
We have to find the limit of [tex]\lim_{x \to \infty} 5x - lnx[/tex]
As we know that L'hospital rule is a theorem which provides a technique to evaluate limits of indeterminate forms.
And the formual for L'hospital rule is
[tex]\lim_{x \to \ c} \frac{f_{x} }{g_{x} } = \lim_{x \to \ c} \frac{f^{'}( x)}{g^{'} (x)}[/tex]
[tex]\lim_{x \to \infty} 5x - lnx[/tex] can be written as
[tex]\lim_{x \to \infty} 5x - lnx\\= \lim_{x \to \infty} x(5 - \frac{lnx}{x})[/tex]
If we put the value of limit in lnx/x we get an indeterminate form ∞/∞.
Therefore, [tex]\lim_{x \to \infty} \frac{lnx}{x} = \frac{\frac{1}{x} }{1}[/tex]
[tex]\implies \lim_{x \to \infty} \frac{1}{x} = 0[/tex] (as x tends to infinity 1/x tends to 0)
So,
[tex]\lim_{x \to \infty} 5x - lnx\\= \lim_{x \to \infty} x(5 - \frac{lnx}{x})[/tex]
[tex]= \lim_{x \to \infty}x(5 -0)[/tex]
[tex]= \lim_{n \to \infty} 5x \\= \infty[/tex](as x tends to ∞ 5x also tends to infinity)
Therefore, the limit of lim x→[infinity] (5x − ln(x)) by using L'hospital rule is ∞.
Find out more information about limit and L'hospital rule here:
https://brainly.com/question/14105620
#SPJ4
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.