Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
The limit of lim x→[infinity] (5x − ln(x)) by using L'hospital rule is ∞.
According to the given question.
We have to find the limit of [tex]\lim_{x \to \infty} 5x - lnx[/tex]
As we know that L'hospital rule is a theorem which provides a technique to evaluate limits of indeterminate forms.
And the formual for L'hospital rule is
[tex]\lim_{x \to \ c} \frac{f_{x} }{g_{x} } = \lim_{x \to \ c} \frac{f^{'}( x)}{g^{'} (x)}[/tex]
[tex]\lim_{x \to \infty} 5x - lnx[/tex] can be written as
[tex]\lim_{x \to \infty} 5x - lnx\\= \lim_{x \to \infty} x(5 - \frac{lnx}{x})[/tex]
If we put the value of limit in lnx/x we get an indeterminate form ∞/∞.
Therefore, [tex]\lim_{x \to \infty} \frac{lnx}{x} = \frac{\frac{1}{x} }{1}[/tex]
[tex]\implies \lim_{x \to \infty} \frac{1}{x} = 0[/tex] (as x tends to infinity 1/x tends to 0)
So,
[tex]\lim_{x \to \infty} 5x - lnx\\= \lim_{x \to \infty} x(5 - \frac{lnx}{x})[/tex]
[tex]= \lim_{x \to \infty}x(5 -0)[/tex]
[tex]= \lim_{n \to \infty} 5x \\= \infty[/tex](as x tends to ∞ 5x also tends to infinity)
Therefore, the limit of lim x→[infinity] (5x − ln(x)) by using L'hospital rule is ∞.
Find out more information about limit and L'hospital rule here:
https://brainly.com/question/14105620
#SPJ4
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.