Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The equation of [tex]f(x) = e^{-6x}[/tex] by maclaurin series is [tex]f(x)=\sum_{i=0}^{\infty} \frac{(-6.x)^{i} }{i!}[/tex].
The maclaurin series for f(x) is defined by the following formula:
[tex]f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)} (0)}{i!} .x^{i}[/tex]--------------(1)
Where [tex]f^{i}[/tex] is the i - th derivative of the function
If f(x) = [tex]e^{-6x}[/tex], then the formula of the i - th derivative of the function is:
[tex]f^{i} =(-6)^{i} .e^{-6x}[/tex]----------------------(2)
Then,
[tex]f^{i}(0) = (-6)^{i}[/tex]
Lastly, the equation of the trascendental function by Maclaurin series is: [tex]f(x)=\sum_{i=0}^{\infty} \frac{(-6)^{i}.x^{i} }{i!} \\f(x)=\sum_{i=0}^{\infty} \frac{(-6.x)^{i} }{i!}[/tex]---------------(3)
Hence,
The equation of [tex]f(x) = e^{-6x}[/tex] by maclaurin series is [tex]f(x)=\sum_{i=0}^{\infty} \frac{(-6.x)^{i} }{i!}[/tex].
Find out more information about maclaurin series here
https://brainly.com/question/24179531
#SPJ4
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.