Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Find the taylor series for f(x) centered at the given value of a. [assume that f has a power series expansion. do not show that rn(x) → 0. ] f(x) = ln x, a = 9

Sagot :

Taylor series is [tex]f(x) = ln2 + \sum_{n=1)^{\infty}(-1)^{n-1} \frac{(n-1)!}{n!(9)^{n}(x9)^{2} }[/tex]

To find the Taylor series for f(x) = ln(x) centering at 9, we need to observe the pattern for the first four derivatives of f(x). From there, we can create a general equation for f(n). Starting with f(x), we have

f(x) = ln(x)

[tex]f^{1}(x)= \frac{1}{x} \\f^{2}(x)= -\frac{1}{x^{2} }\\f^{3}(x)= -\frac{2}{x^{3} }\\f^{4}(x)= \frac{-6}{x^{4} }[/tex]

.

.

.

Since we need to have it centered at 9, we must take the value of f(9), and so on.

f(9) = ln(9)

[tex]f^{1}(9)= \frac{1}{9} \\f^{2}(9)= -\frac{1}{9^{2} }\\f^{3}(x)= -\frac{1(2)}{9^{3} }\\f^{4}(x)= \frac{-1(2)(3)}{9^{4} }[/tex]

.

.

.

Following the pattern, we can see that for [tex]f^{n}(x)[/tex],

[tex]f^{n}(x)=(-1)^{n-1}\frac{1.2.3.4.5...........(n-1)}{9^{n} } \\f^{n}(x)=(-1)^{n-1}\frac{(n-1)!}{9^{n}}[/tex]

This applies for n ≥ 1, Expressing f(x) in summation, we have

[tex]\sum_{n=0}^{\infinite} \frac{f^{n}(9) }{n!} (x-9)^{2}[/tex]

Combining ln2 with the rest of series, we have

[tex]f(x) = ln2 + \sum_{n=1)^{\infty}(-1)^{n-1} \frac{(n-1)!}{n!(9)^{n}(x9)^{2} }[/tex]

Taylor series is [tex]f(x) = ln2 + \sum_{n=1)^{\infty}(-1)^{n-1} \frac{(n-1)!}{n!(9)^{n}(x9)^{2} }[/tex]

Find out more information about taylor series here

brainly.com/question/13057266

#SPJ4