Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Find the taylor series for f(x) centered at the given value of a. [assume that f has a power series expansion. do not show that rn(x) → 0. ] f(x) = ln x, a = 9

Sagot :

Taylor series is [tex]f(x) = ln2 + \sum_{n=1)^{\infty}(-1)^{n-1} \frac{(n-1)!}{n!(9)^{n}(x9)^{2} }[/tex]

To find the Taylor series for f(x) = ln(x) centering at 9, we need to observe the pattern for the first four derivatives of f(x). From there, we can create a general equation for f(n). Starting with f(x), we have

f(x) = ln(x)

[tex]f^{1}(x)= \frac{1}{x} \\f^{2}(x)= -\frac{1}{x^{2} }\\f^{3}(x)= -\frac{2}{x^{3} }\\f^{4}(x)= \frac{-6}{x^{4} }[/tex]

.

.

.

Since we need to have it centered at 9, we must take the value of f(9), and so on.

f(9) = ln(9)

[tex]f^{1}(9)= \frac{1}{9} \\f^{2}(9)= -\frac{1}{9^{2} }\\f^{3}(x)= -\frac{1(2)}{9^{3} }\\f^{4}(x)= \frac{-1(2)(3)}{9^{4} }[/tex]

.

.

.

Following the pattern, we can see that for [tex]f^{n}(x)[/tex],

[tex]f^{n}(x)=(-1)^{n-1}\frac{1.2.3.4.5...........(n-1)}{9^{n} } \\f^{n}(x)=(-1)^{n-1}\frac{(n-1)!}{9^{n}}[/tex]

This applies for n ≥ 1, Expressing f(x) in summation, we have

[tex]\sum_{n=0}^{\infinite} \frac{f^{n}(9) }{n!} (x-9)^{2}[/tex]

Combining ln2 with the rest of series, we have

[tex]f(x) = ln2 + \sum_{n=1)^{\infty}(-1)^{n-1} \frac{(n-1)!}{n!(9)^{n}(x9)^{2} }[/tex]

Taylor series is [tex]f(x) = ln2 + \sum_{n=1)^{\infty}(-1)^{n-1} \frac{(n-1)!}{n!(9)^{n}(x9)^{2} }[/tex]

Find out more information about taylor series here

brainly.com/question/13057266

#SPJ4

Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.