At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The velocity vector of the given path r(t) = (9cos2(t), 3t - t^3, 2t) is [tex]v = 9sint\hat{i}+(3-3t^{2} )\hat{j} +2\hat{k}[/tex].
According to the given question.
We have a path
r(t) = (9cos2(t), 3t - t^3, 2t)
So, the vector form of the above vector form can be written as
[tex]r(t) = 9cos2(t)\hat{i}+ (3t - t^{3} )\hat{j} + 2t\hat{k}[/tex]
As, we know that the rate of change of position of an object is called velocity vector.
Therefore, the velocity vector of the given path r(t) = (9cos2(t), 3t - t^3, 2t) is given by
[tex]v = \frac{d(r(t))}{dt}[/tex]
[tex]\implies v = \frac{d(9cost\hat{i}+(3t-t^{3})\hat{j}+2t\hat{k} }{dt}[/tex]
[tex]\implies v = \frac{d(9cost\hat{i})}{dt} +\frac{d(3t-t^{3})\hat{j} }{dt} +\frac{d(2t)}{d(t)}[/tex]
[tex]\implies v = 9sint\hat{i}+(3-3t^{2} )\hat{j} +2\hat{k}[/tex]
Hence, the velocity vector of the given path r(t) = (9cos2(t), 3t - t^3, 2t) is [tex]v = 9sint\hat{i}+(3-3t^{2} )\hat{j} +2\hat{k}[/tex].
Find out more information about velocity vector here:
https://brainly.com/question/17482145
#SPJ4
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.