Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The velocity vector of the given path r(t) = (9cos2(t), 3t - t^3, 2t) is [tex]v = 9sint\hat{i}+(3-3t^{2} )\hat{j} +2\hat{k}[/tex].
According to the given question.
We have a path
r(t) = (9cos2(t), 3t - t^3, 2t)
So, the vector form of the above vector form can be written as
[tex]r(t) = 9cos2(t)\hat{i}+ (3t - t^{3} )\hat{j} + 2t\hat{k}[/tex]
As, we know that the rate of change of position of an object is called velocity vector.
Therefore, the velocity vector of the given path r(t) = (9cos2(t), 3t - t^3, 2t) is given by
[tex]v = \frac{d(r(t))}{dt}[/tex]
[tex]\implies v = \frac{d(9cost\hat{i}+(3t-t^{3})\hat{j}+2t\hat{k} }{dt}[/tex]
[tex]\implies v = \frac{d(9cost\hat{i})}{dt} +\frac{d(3t-t^{3})\hat{j} }{dt} +\frac{d(2t)}{d(t)}[/tex]
[tex]\implies v = 9sint\hat{i}+(3-3t^{2} )\hat{j} +2\hat{k}[/tex]
Hence, the velocity vector of the given path r(t) = (9cos2(t), 3t - t^3, 2t) is [tex]v = 9sint\hat{i}+(3-3t^{2} )\hat{j} +2\hat{k}[/tex].
Find out more information about velocity vector here:
https://brainly.com/question/17482145
#SPJ4
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.