Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The values of a + b, 6a + 9b, |a|, and |a − b| are −3i + 16j, 0i + 108j, 15 and 17 respectively. This can be obtained by using vector addition, vector subtraction and formula to find magnitude of a vector.
Find the values of a + b, 6a + 9b, |a|, and |a − b|:
Given that,
a = <−9, 12> , b = <6, 4>
These vectors can be rewritten as,
a = <−9, 12> = −9i + 12j
b = <6, 4> = 6i + 4j
- To find a + b,we add both vectors a and b together,
a + b = −9i + 12j + 6i + 4j
a + b = −9i + 6i + 12j + 4j
a + b = (−9 + 6)i + (12 + 4)j
a + b = −3i + 16j
- To find 6a + 9b, we first find 6a and 9b then add them both together,
6a = 6 (−9i + 12j )
6a = −54i + 72j
9b = 9(6i + 4j)
9b = 54i + 36j
Now add 6a and 9b together,
6a + 9b = −54i + 72j + 54i + 36j
6a + 9b = −54i + 54i + 72j + 36j
6a + 9b = 0i + 108j
- To find |a|, use the formula to find the magnitude of a vector,
If a = a₁i + a₂j, |a| = √a₁² + a₂²
Here, a = −9i + 12j
|a| = √(−9)² + (12)²
|a| = √81 + 144 = √225
|a| = 15
- To find |a − b|, first subtract b from a and find the magnitude of the resultant,
a - b = −9i + 12j - (6i + 4j)
a - b = −9i - 6i + 12j - 4j
a - b = −15i + 8j
Now use the formula to find the magnitude of a vector,
|a − b| = √(-15)² + (8)²
|a − b| = √225 + 64 = √289
|a − b| = 17
Hence the values of a + b, 6a + 9b, |a|, and |a − b| are −3i + 16j, 0i + 108j, 15 and 17 respectively.
Learn more about magnitude of a vector here:
brainly.com/question/27870005
#SPJ1
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.