Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
The values of a + b, 6a + 9b, |a|, and |a − b| are −3i + 16j, 0i + 108j, 15 and 17 respectively. This can be obtained by using vector addition, vector subtraction and formula to find magnitude of a vector.
Find the values of a + b, 6a + 9b, |a|, and |a − b|:
Given that,
a = <−9, 12> , b = <6, 4>
These vectors can be rewritten as,
a = <−9, 12> = −9i + 12j
b = <6, 4> = 6i + 4j
- To find a + b,we add both vectors a and b together,
a + b = −9i + 12j + 6i + 4j
a + b = −9i + 6i + 12j + 4j
a + b = (−9 + 6)i + (12 + 4)j
a + b = −3i + 16j
- To find 6a + 9b, we first find 6a and 9b then add them both together,
6a = 6 (−9i + 12j )
6a = −54i + 72j
9b = 9(6i + 4j)
9b = 54i + 36j
Now add 6a and 9b together,
6a + 9b = −54i + 72j + 54i + 36j
6a + 9b = −54i + 54i + 72j + 36j
6a + 9b = 0i + 108j
- To find |a|, use the formula to find the magnitude of a vector,
If a = a₁i + a₂j, |a| = √a₁² + a₂²
Here, a = −9i + 12j
|a| = √(−9)² + (12)²
|a| = √81 + 144 = √225
|a| = 15
- To find |a − b|, first subtract b from a and find the magnitude of the resultant,
a - b = −9i + 12j - (6i + 4j)
a - b = −9i - 6i + 12j - 4j
a - b = −15i + 8j
Now use the formula to find the magnitude of a vector,
|a − b| = √(-15)² + (8)²
|a − b| = √225 + 64 = √289
|a − b| = 17
Hence the values of a + b, 6a + 9b, |a|, and |a − b| are −3i + 16j, 0i + 108j, 15 and 17 respectively.
Learn more about magnitude of a vector here:
brainly.com/question/27870005
#SPJ1
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.