Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The values of a + b, 6a + 9b, |a|, and |a − b| are −3i + 16j, 0i + 108j, 15 and 17 respectively. This can be obtained by using vector addition, vector subtraction and formula to find magnitude of a vector.
Find the values of a + b, 6a + 9b, |a|, and |a − b|:
Given that,
a = <−9, 12> , b = <6, 4>
These vectors can be rewritten as,
a = <−9, 12> = −9i + 12j
b = <6, 4> = 6i + 4j
- To find a + b,we add both vectors a and b together,
a + b = −9i + 12j + 6i + 4j
a + b = −9i + 6i + 12j + 4j
a + b = (−9 + 6)i + (12 + 4)j
a + b = −3i + 16j
- To find 6a + 9b, we first find 6a and 9b then add them both together,
6a = 6 (−9i + 12j )
6a = −54i + 72j
9b = 9(6i + 4j)
9b = 54i + 36j
Now add 6a and 9b together,
6a + 9b = −54i + 72j + 54i + 36j
6a + 9b = −54i + 54i + 72j + 36j
6a + 9b = 0i + 108j
- To find |a|, use the formula to find the magnitude of a vector,
If a = a₁i + a₂j, |a| = √a₁² + a₂²
Here, a = −9i + 12j
|a| = √(−9)² + (12)²
|a| = √81 + 144 = √225
|a| = 15
- To find |a − b|, first subtract b from a and find the magnitude of the resultant,
a - b = −9i + 12j - (6i + 4j)
a - b = −9i - 6i + 12j - 4j
a - b = −15i + 8j
Now use the formula to find the magnitude of a vector,
|a − b| = √(-15)² + (8)²
|a − b| = √225 + 64 = √289
|a − b| = 17
Hence the values of a + b, 6a + 9b, |a|, and |a − b| are −3i + 16j, 0i + 108j, 15 and 17 respectively.
Learn more about magnitude of a vector here:
brainly.com/question/27870005
#SPJ1
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.