Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Prove this please
Optional Math




Cos2A =
[tex] \frac{( \cot\alpha - \tan\alpha ) }{( \cot\alpha + \tan\alpha ) } [/tex]



Sagot :

Step-by-step explanation:

proof from r.h.s to l.h.s

(cot(a)-tan(a))(cot(a)+tan(a))

cot(a)=cos(a)/sin(a)

tan(a)=sin(a)/cos(a)

(cot(a)-tan(a))=cos(a)/sin(a) - sin(a)/cos(a)

=cos²(a)-sin²(a)/sin(a)cos(a)

from trigonometry identity cos²(a)-sin²(a)=cos2(a)

so we have cos2(a)/sin(a)cos(a)

(cot(a)+tan(a))=cos(a)/sin(a) +sin(a)/cos(a)

=cos²(a)+sin²(a)/cos(a)sin(a)

from trigonometry identity cos²(a)+sin²(a)=so we have 1/cos(a)sin(a)

(cot(a)-tan(a)) ÷(cot(a)+tan(a))

=cos2(a)/cos(a)sin(a) ÷ 1/cos(a)sin(a)

=cos2(a)/cos(a)sin(a) * cos(a)sin(a)

=cos2(a)

proved

We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.