Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Step-by-step explanation:
proof from r.h.s to l.h.s
(cot(a)-tan(a))(cot(a)+tan(a))
cot(a)=cos(a)/sin(a)
tan(a)=sin(a)/cos(a)
(cot(a)-tan(a))=cos(a)/sin(a) - sin(a)/cos(a)
=cos²(a)-sin²(a)/sin(a)cos(a)
from trigonometry identity cos²(a)-sin²(a)=cos2(a)
so we have cos2(a)/sin(a)cos(a)
(cot(a)+tan(a))=cos(a)/sin(a) +sin(a)/cos(a)
=cos²(a)+sin²(a)/cos(a)sin(a)
from trigonometry identity cos²(a)+sin²(a)=so we have 1/cos(a)sin(a)
(cot(a)-tan(a)) ÷(cot(a)+tan(a))
=cos2(a)/cos(a)sin(a) ÷ 1/cos(a)sin(a)
=cos2(a)/cos(a)sin(a) * cos(a)sin(a)
=cos2(a)
proved
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.