At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
If the pth term of an arithmetic progression is q and qth term is p then the (p+q) th term is 0.
Given that the p th term of an A.P is q aand q th term is p.
We are required to find the (p+q) th term of that A.P.
Arithmetic progression is a sequence in which all the terms have common difference between them.
N th term of an A.P.=a+(n-1)d
p th term=a+(p-1)d
q=a+(p-1)d-------1
q th term=a+(q-1)d
p=a+(q-1)d---------2
Subtract equation 2 by 1.
q-p==a+(p-1)d-a-(q-1)d
q-p=pd-qd-d+d
q-p=d(p-q)
d=(p-q)/(q-p)
d=-(p-q)/(p-q)
d=-1
Put the value of d in 1.
q=a+(p-1)(-1)
q=a-p+1
a=q+p-1
(p+q) th term=a+(n-1)d
=q+p-1+(p+q-1)(-1)
=q+p-1-p-q+1
=0
Hence if the pth term of an A.P is q and qth term is p then the (p+q) th term is 0.
Learn more about arithmetic progression at https://brainly.com/question/6561461
#SPJ1
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.