Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The ODE is separable.
[tex]\dfrac{dy}{dx} = xy \iff \dfrac{dy}y = x\,dx[/tex]
Integrate both sides to get
[tex]\displaystyle \int\frac{dy}y = \int x\,dx[/tex]
[tex]\boxed{\ln|y| = \dfrac12 x^2 + C}[/tex]
But notice that replacing the constant [tex]C[/tex] with [tex]-C[/tex] doesn't affect the solution, since its derivative would recover the same ODE as before.
[tex]\ln|y| = \dfrac12 x^2 - C \implies \dfrac1y \dfrac{dy}{dx} = x \implies \dfrac{dy}{dx} = xy[/tex]
so either of the first two answers are technically correct.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.