Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The span of 3 vectors can have dimension at most 3, so 9 is certainly not correct.
Check whether the 3 vectors are linearly independent. If they are not, then there is some choice of scalars [tex]c_1,c_2,c_3[/tex] (not all zero) such that
[tex]c_1 (2,-1,1) + c_2 (3,1,1) + c_3 (1,2,0) = (0,0,0)[/tex]
which leads to the system of linear equations,
[tex]\begin{cases} 2c_1 + 3c_2 + c_3 = 0 \\ -c_1 + c_2 + 2c_3 = 0 \\ c_1 + c_2 = 0 \end{cases}[/tex]
From the third equation, we have [tex]c_1=-c_2[/tex], and substituting this into the second equation gives
[tex]-c_1 + c_2 + 2c_3 = 2c_2 + 2c_3 = 0 \implies c_2 + c_3 = 0 \implies c_2 = -c_3[/tex]
and in turn, [tex]c_1=c_3[/tex]. Substituting these into the first equation gives
[tex]2c_1 + 3c_2 + c_3 = 2c_3 - 3c_3 + c_3 = 0 \implies 0=0[/tex]
which tells us that any value of [tex]c_3[/tex] will work. If [tex]c_3 = t[/tex], then [tex]c_1=t[/tex] and [tex]c_2 = -t[/tex]. Therefore the 3 vectors are not linearly independent, so their span cannot have dimension 3.
Repeating the calculations above while taking only 2 of the given vectors at a time, we see that they are pairwise linearly independent, so the span of each pair has dimension 2. This means the span of all 3 vectors taken at once must be 2.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.