Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The equations with tangents at (0,0) are [tex]y = \frac{4}{7} x[/tex] and
[tex]y = -\frac{4}{7} x[/tex].
In this question,
The curves are x = 7 cos(t), y = 4 sin(t) cos(t)
Two tangents at (0, 0)
In this case, the parametric derivative of x and y are expressed in terms of t.
The first derivative dy/dx can be expressed as
[tex]\frac{dy}{dx}=\frac{\frac{dy}{dt} }{\frac{dx}{dt} }[/tex]
Now, dy/dt is obtained by differentiate y with respect to t,
[tex]\frac{dy}{dt}= 4[cos(t)(cos(t))+sin(t)(-sin(t))][/tex]
⇒ [tex]\frac{dy}{dt}= 4[cos^{2} (t)-sin^{2} (t)][/tex]
Now, dx/dt is obtained by differentiate x with respect to t,
[tex]\frac{dx}{dt} =7(-sin(t))[/tex]
⇒ [tex]\frac{dx}{dt} =-7sin(t)[/tex]
Thus, [tex]\frac{dy}{dx}=\frac{4[cos^{2}(t)-sin^{2}(t ) ]}{-7sin(t)}[/tex]
At (0,0) x = 0 and y = 0, Then
0 = 7 cos(t)
0 = 4 sin(t) cos(t)
and
cos(t) = 0
sin(t) cos(t) = 0
There are two values between -π and π which satisfy these equations simultaneously are
t = π/2
t = -π/2
The equation of a straight line given a point and its slope is
y-y₀ = m(x-x₀)
The two tangents lies at (0,0), so the equation becomes
y = mx
Then the two straight lines will be
y = m₁x and
y = m₂x
For t = π/2,
[tex]m_1=\frac{dy}{dx}=\frac{4[cos^{2}(\frac{\pi }{2} )-sin^{2}(\frac{\pi }{2} ) ]}{-7sin(\frac{\pi }{2} )}[/tex]
⇒ [tex]m_1=-\frac{4[0-1]}{7(1)}[/tex]
⇒ [tex]m_1=\frac{4}{7}[/tex]
For t = -π/2,
[tex]m_2=\frac{dy}{dx}=\frac{4[cos^{2}(-\frac{\pi }{2} )-sin^{2}(-\frac{\pi }{2} ) ]}{-7sin(-\frac{\pi }{2} )}[/tex]
⇒ [tex]m_2=-\frac{4[0-1]}{-7(1)}[/tex]
⇒ [tex]m_2=-\frac{4}{7}[/tex]
Thus the equations with tangents at (0,0) are [tex]y = \frac{4}{7} x[/tex] and
[tex]y = -\frac{4}{7} x[/tex].
Learn more about equation of curve here
https://brainly.com/question/9959935
#SPJ4
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.