Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The equations with tangents at (0,0) are [tex]y = \frac{4}{7} x[/tex] and
[tex]y = -\frac{4}{7} x[/tex].
In this question,
The curves are x = 7 cos(t), y = 4 sin(t) cos(t)
Two tangents at (0, 0)
In this case, the parametric derivative of x and y are expressed in terms of t.
The first derivative dy/dx can be expressed as
[tex]\frac{dy}{dx}=\frac{\frac{dy}{dt} }{\frac{dx}{dt} }[/tex]
Now, dy/dt is obtained by differentiate y with respect to t,
[tex]\frac{dy}{dt}= 4[cos(t)(cos(t))+sin(t)(-sin(t))][/tex]
⇒ [tex]\frac{dy}{dt}= 4[cos^{2} (t)-sin^{2} (t)][/tex]
Now, dx/dt is obtained by differentiate x with respect to t,
[tex]\frac{dx}{dt} =7(-sin(t))[/tex]
⇒ [tex]\frac{dx}{dt} =-7sin(t)[/tex]
Thus, [tex]\frac{dy}{dx}=\frac{4[cos^{2}(t)-sin^{2}(t ) ]}{-7sin(t)}[/tex]
At (0,0) x = 0 and y = 0, Then
0 = 7 cos(t)
0 = 4 sin(t) cos(t)
and
cos(t) = 0
sin(t) cos(t) = 0
There are two values between -π and π which satisfy these equations simultaneously are
t = π/2
t = -π/2
The equation of a straight line given a point and its slope is
y-y₀ = m(x-x₀)
The two tangents lies at (0,0), so the equation becomes
y = mx
Then the two straight lines will be
y = m₁x and
y = m₂x
For t = π/2,
[tex]m_1=\frac{dy}{dx}=\frac{4[cos^{2}(\frac{\pi }{2} )-sin^{2}(\frac{\pi }{2} ) ]}{-7sin(\frac{\pi }{2} )}[/tex]
⇒ [tex]m_1=-\frac{4[0-1]}{7(1)}[/tex]
⇒ [tex]m_1=\frac{4}{7}[/tex]
For t = -π/2,
[tex]m_2=\frac{dy}{dx}=\frac{4[cos^{2}(-\frac{\pi }{2} )-sin^{2}(-\frac{\pi }{2} ) ]}{-7sin(-\frac{\pi }{2} )}[/tex]
⇒ [tex]m_2=-\frac{4[0-1]}{-7(1)}[/tex]
⇒ [tex]m_2=-\frac{4}{7}[/tex]
Thus the equations with tangents at (0,0) are [tex]y = \frac{4}{7} x[/tex] and
[tex]y = -\frac{4}{7} x[/tex].
Learn more about equation of curve here
https://brainly.com/question/9959935
#SPJ4
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.