Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Using the z-distribution, the estimate for how much the drug will lower a typical patient's systolic blood pressure is:
[tex]46.6 \leq \mu \leq 48[/tex]
What is a z-distribution confidence interval?
The confidence interval is:
[tex]\overline{x} \pm z\frac{\sigma}{\sqrt{n}}[/tex]
In which:
- [tex]\overline{x}[/tex] is the sample mean.
- z is the critical value.
- n is the sample size.
- [tex]\sigma[/tex] is the standard deviation for the population.
In this problem, we have a 80% confidence level, hence[tex]\alpha = 0.8[/tex], z is the value of Z that has a p-value of [tex]\frac{1+0.8}{2} = 0.9[/tex], so the critical value is z = 1.28.
The other parameters are given by:
[tex]\overline{x} = 47.3, \sigma = 15.9, n = 878[/tex]
Then the bounds of the interval are:
[tex]\overline{x} - z\frac{\sigma}{\sqrt{n}} = 47.3 - 1.28\frac{15.9}{\sqrt{878}} = 46.6[/tex]
[tex]\overline{x} + z\frac{\sigma}{\sqrt{n}} = 47.3 + 1.28\frac{15.9}{\sqrt{878}} = 48[/tex]
Hence the interval is:
[tex]46.6 \leq \mu \leq 48[/tex]
More can be learned about the z-distribution at https://brainly.com/question/25890103
#SPJ1
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.