Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The terms through degree four of the Maclaurin series is [tex]f(x)=x+x^{2} +\frac{5x^{3} }{6} +\frac{5x^{4} }{6} +.....[/tex].
In this question,
The function is f(x) = [tex]\frac{sin(x)}{1-x}[/tex]
The general form of Maclaurin series is
[tex]\sum \limits^\infty_{k:0} \frac{f^{k}(0) }{k!}(x-0)^{k} = f(0)+\frac{f'(0)}{1!}x+\frac{f''(0)}{2!}x^{2} +\frac{f'''(0)}{3!}x^{3}+......[/tex]
To find the Maclaurin series, let us split the terms as
[tex]f(x)=sin(x)(\frac{1}{1-x} )[/tex] ------- (1)
Now, consider f(x) = sin(x)
Then, the derivatives of f(x) with respect to x, we get
f'(x) = cos(x), f'(0) = 1
f''(x) = -sin(x), f'(0) = 0
f'''(x) = -cos(x), f'(0) = -1
[tex]f^{iv}(x)[/tex] = cos(x), f'(0) = 0
Maclaurin series for sin(x) becomes,
[tex]f(x) = 0 +\frac{1}{1!}x +0+(-\frac{1}{3!} )x^{3} +....[/tex]
⇒ [tex]f(x)=x-\frac{x^{3} }{3!} +\frac{x^{5} }{5!}+.....[/tex]
Now, consider [tex]f(x) = (1-x)^{-1}[/tex]
Then, the derivatives of f(x) with respect to x, we get
[tex]f'(x) = (1-x)^{-2}, f'(0) = 1[/tex]
[tex]f''(x) = 2(1-x)^{-3}, f''(0) = 2[/tex]
[tex]f'''(x) = 6(1-x)^{-4}, f'''(0) = 6[/tex]
[tex]f^{iv} (x) = 24(1-x)^{-5}, f^{iv}(0) = 24[/tex]
Maclaurin series for (1-x)^-1 becomes,
[tex]f(x) = 1 +\frac{1}{1!}x +\frac{2}{2!}x^{2} +(\frac{6}{3!} )x^{3} +....[/tex]
⇒ [tex]f(x)=1+x+x^{2} +x^{3} +......[/tex]
Thus the Maclaurin series for [tex]f(x)=sin(x)(\frac{1}{1-x} )[/tex] is
⇒ [tex]f(x)=(x-\frac{x^{3} }{3!} +\frac{x^{5} }{5!}+..... )(1+x+x^{2} +x^{3} +......)[/tex]
⇒ [tex]f(x)=x+x^{2} +x^{3} - \frac{x^{3} }{6} +x^{4}-\frac{x^{4} }{6} +.....[/tex]
⇒ [tex]f(x)=x+x^{2} +\frac{5x^{3} }{6} +\frac{5x^{4} }{6} +.....[/tex]
Hence we can conclude that the terms through degree four of the Maclaurin series is [tex]f(x)=x+x^{2} +\frac{5x^{3} }{6} +\frac{5x^{4} }{6} +.....[/tex].
Learn more about Maclaurin series here
https://brainly.com/question/10661179
#SPJ4
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.