Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
The parametric equation for the tangent line to the curve is x = 1 - t, y = t, z = 1 - t.
For this question,
The curve is given as
x(t)=e^-t cos(t),
y(t) =e^-t sin(t),
z(t)=e^-t
The point is at (1,0,1)
The vector equation for the curve is
r(t) = { x(t), y(t), z(t) }
Differentiate r(t) with respect to t,
x'(t) = -e^-t cos(t) + e^-t (-sin(t))
⇒ x'(t) = -e^-t cos(t) - e^-t sin(t)
⇒ x'(t) = -e^-t (cos(t) + sin(t))
y'(t) = - e^-t sin(t) + e^-t cos(t)
⇒ y'(t) = e^-t ((cos(t) - sin(t))
z'(t) = -e^-t
Then, r'(t) = { -e^-t (cos(t) + sin(t)), e^-t ((cos(t) - sin(t)), -e^-t }
The parameter value corresponding to (1,0,1) is t = 0. Putting in t=0 into r'(t) to solve for r'(t), we get
⇒ r'(t) = { -e^-0 (cos(0) + sin(0)), e^-0 ((cos(0) - sin(0)), -e^-0 }
⇒ r'(t) = { -1(1+0), 1(1-0), -1 }
⇒ r'(t) = { -1, 1, -1 }
The parametric equation for line through the point (x₀, y₀, z₀) and parallel to the direction vector <a, b, c > are
x = x₀+at
y = y₀+bt
z = z₀+ct
Now substituting the (x₀, y₀, z₀) as (1,0,1) and <a, b, c > into x, y and z, respectively to solve for the parametric equation of the tangent line to the curve, we get
x = 1 + (-1)t
⇒ x = 1 - t
y = 0 + (1)t
⇒ y = t
z = 1 + (-1)t
⇒ z = 1 - t
Hence we can conclude that the parametric equation for the tangent line to the curve is x = 1 - t, y = t, z = 1 - t.
Learn more about parametric equation here
https://brainly.com/question/24097871
#SPJ4
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.