Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The polar equation of an ellipse is [tex]r=-\frac{3}{1+2cos\theta}[/tex].
The vertices of ellipse are (−1,0) and (3,0).
The polar equation of an ellipse can be represented as
[tex]r=\frac{ep}{1+ecos\theta}[/tex]
where e is the eccentricity.
Eccentricity, e = [tex]\frac{c}{a}[/tex]
c is the distance from the center to the focus and a is the distance from the center to the vertex
[tex]c=\frac{3-(-1)}{2}[/tex]
⇒ [tex]c=\frac{4}{2}[/tex]
⇒ c = 2
[tex]a=\frac{3+(-1)}{2}[/tex]
⇒ [tex]a=\frac{2}{2}[/tex]
⇒ a = 1
Then, e = [tex]\frac{2}{1}[/tex]
⇒ e = 2
Now, the polar equation of an ellipse becomes as,
⇒ [tex]r=\frac{2p}{1+2cos\theta}[/tex] ------- (1)
Now plug in a vertex point such as (-1,0) and solve for p,
⇒ [tex]-1=\frac{2p}{1+2cos0}[/tex]
⇒ [tex]-1=\frac{2p}{1+2(1)}[/tex] [∵ cos 0 = 1]
⇒ [tex]-1=\frac{2p}{3}[/tex]
⇒ [tex]-3=2p[/tex]
⇒ [tex]p=-\frac{3}{2}[/tex]
Thus the polar equation of an ellipse (1) becomes as,
⇒ [tex]r=\frac{2(-\frac{3}{2} )}{1+2cos\theta}[/tex]
⇒ [tex]r=-\frac{3}{1+2cos\theta}[/tex]
Hence we can conclude that the polar equation of an ellipse is [tex]r=-\frac{3}{1+2cos\theta}[/tex].
Learn more about polar equation of an ellipse here
https://brainly.com/question/17571182
#SPJ4
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.