Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
The function [tex]f(x)=4\sqrt[3]{x}[/tex] is a cube root function and the function end behavior is: [tex]x[/tex] → [tex]+[/tex] ∞, [tex]f(x)[/tex] → [tex]+[/tex] ∞, and as [tex]x[/tex] → - ∞, [tex]f(x)[/tex] → [tex]+[/tex] ∞
What is end behavior?
- The end behavior of a function f defines the behavior of the function's graph at the "ends" of the x-axis.
- In other words, the end behavior of a function explains the graph's trend when we look at the right end of the x-axis (as x approaches +) and the left end of the x-axis (as x approaches ).
To determine the end behavior:
- The equation of the function is given as: [tex]f(x)=4\sqrt[3]{x}[/tex]
- To determine the end behavior, we plot the graph of the function f(x).
- We can see from the accompanying graph of the function:
- As x approaches infinity, so does the function f(x), and vice versa.
- As a result, the function end behavior is:
[tex]x[/tex] → [tex]+[/tex] ∞, [tex]f(x)[/tex] → [tex]+[/tex] ∞, and as [tex]x[/tex] → - ∞, [tex]f(x)[/tex] → [tex]+[/tex] ∞
Therefore, the function [tex]f(x)=4\sqrt[3]{x}[/tex] is a cube root function and the function end behavior is: [tex]x[/tex] → [tex]+[/tex] ∞, [tex]f(x)[/tex] → [tex]+[/tex] ∞, and as [tex]x[/tex] → - ∞, [tex]f(x)[/tex] → [tex]+[/tex] ∞
Know more about functions' end behavior here:
https://brainly.com/question/1365136
#SPJ4
The complete question is given below:
What is the end behavior of the function f of x equals negative 4 times the cube root of x?
As x → –∞, f(x) → –∞, and as x → ∞, f(x) → ∞.
As x → –∞, f(x) → ∞, and as x → ∞, f(x) → –∞.
As x → –∞, f(x) → 0, and as x → ∞, f(x) → 0.
As x → 0, f(x) → –∞, and as x → ∞, f(x) → 0.
![View image tutorconsortium33](https://us-static.z-dn.net/files/d14/a221e18bbbeb14c5baa7832271b3580c.png)
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.