Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approximating rectangle. x = 4 − y2, x = y2 − 4

Sagot :

The region enclosed by the given curve is integrated with respect to y and the area is 21.33 square units.

In this question,

The curves are x = 4 - y^2 -------- (1) and

x = y^2 - 4 ------- (2)

The limits of the integral can be found by solving these two curves simultaneously.

On equating (1) and (2),

[tex]4 - y^2 = y^2 - 4[/tex]

⇒ [tex]4 +4 = y^2 +y^2[/tex]

⇒ [tex]8= 2y^2[/tex]

⇒ [tex]y^2=\frac{8}{2}[/tex]

⇒ [tex]y^2=4[/tex]

⇒ y = +2 or -2

The limits of y is {-2 < y +2} or 2{0 < y < 2}

The diagram below shows the region enclosed by the two curves.

The region enclosed by the given curves can be integrated with respect to y as

[tex]A=2\int\limits^2_0 {[(4-y^{2})-(y^{2}-4 )] } \, dy[/tex]

⇒ [tex]A=2\int\limits^2_0 {[4-y^{2}-y^{2}+4 ] } \, dy[/tex]

⇒ [tex]A=2\int\limits^2_0 {[8-2y^{2} ] } \, dy[/tex]

⇒ [tex]A=2[8y-\frac{2y^{3} }{3} ]\limits^2_0[/tex]

⇒ [tex]A=2[8(2)-\frac{2(2)^{3} }{3} ][/tex]

⇒ [tex]A=2[16-\frac{16}{3} ][/tex]

⇒ [tex]A=2[\frac{48-16}{3} ][/tex]

⇒ [tex]A=2[\frac{32}{3} ][/tex]

⇒ [tex]A=\frac{64}{3}[/tex]

⇒ [tex]A=21.33[/tex]

Hence we can conclude that the region enclosed by the given curve is integrated with respect to y and the area is 21.33 square units.

Learn more about region enclosed by the curve here

https://brainly.com/question/17145929

#SPJ4

View image KarpaT