Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The region enclosed by the given curve is integrated with respect to y and the area is 21.33 square units.
In this question,
The curves are x = 4 - y^2 -------- (1) and
x = y^2 - 4 ------- (2)
The limits of the integral can be found by solving these two curves simultaneously.
On equating (1) and (2),
[tex]4 - y^2 = y^2 - 4[/tex]
⇒ [tex]4 +4 = y^2 +y^2[/tex]
⇒ [tex]8= 2y^2[/tex]
⇒ [tex]y^2=\frac{8}{2}[/tex]
⇒ [tex]y^2=4[/tex]
⇒ y = +2 or -2
The limits of y is {-2 < y +2} or 2{0 < y < 2}
The diagram below shows the region enclosed by the two curves.
The region enclosed by the given curves can be integrated with respect to y as
[tex]A=2\int\limits^2_0 {[(4-y^{2})-(y^{2}-4 )] } \, dy[/tex]
⇒ [tex]A=2\int\limits^2_0 {[4-y^{2}-y^{2}+4 ] } \, dy[/tex]
⇒ [tex]A=2\int\limits^2_0 {[8-2y^{2} ] } \, dy[/tex]
⇒ [tex]A=2[8y-\frac{2y^{3} }{3} ]\limits^2_0[/tex]
⇒ [tex]A=2[8(2)-\frac{2(2)^{3} }{3} ][/tex]
⇒ [tex]A=2[16-\frac{16}{3} ][/tex]
⇒ [tex]A=2[\frac{48-16}{3} ][/tex]
⇒ [tex]A=2[\frac{32}{3} ][/tex]
⇒ [tex]A=\frac{64}{3}[/tex]
⇒ [tex]A=21.33[/tex]
Hence we can conclude that the region enclosed by the given curve is integrated with respect to y and the area is 21.33 square units.
Learn more about region enclosed by the curve here
https://brainly.com/question/17145929
#SPJ4
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.