At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The region enclosed by the given curve is integrated with respect to y and the area is 21.33 square units.
In this question,
The curves are x = 4 - y^2 -------- (1) and
x = y^2 - 4 ------- (2)
The limits of the integral can be found by solving these two curves simultaneously.
On equating (1) and (2),
[tex]4 - y^2 = y^2 - 4[/tex]
⇒ [tex]4 +4 = y^2 +y^2[/tex]
⇒ [tex]8= 2y^2[/tex]
⇒ [tex]y^2=\frac{8}{2}[/tex]
⇒ [tex]y^2=4[/tex]
⇒ y = +2 or -2
The limits of y is {-2 < y +2} or 2{0 < y < 2}
The diagram below shows the region enclosed by the two curves.
The region enclosed by the given curves can be integrated with respect to y as
[tex]A=2\int\limits^2_0 {[(4-y^{2})-(y^{2}-4 )] } \, dy[/tex]
⇒ [tex]A=2\int\limits^2_0 {[4-y^{2}-y^{2}+4 ] } \, dy[/tex]
⇒ [tex]A=2\int\limits^2_0 {[8-2y^{2} ] } \, dy[/tex]
⇒ [tex]A=2[8y-\frac{2y^{3} }{3} ]\limits^2_0[/tex]
⇒ [tex]A=2[8(2)-\frac{2(2)^{3} }{3} ][/tex]
⇒ [tex]A=2[16-\frac{16}{3} ][/tex]
⇒ [tex]A=2[\frac{48-16}{3} ][/tex]
⇒ [tex]A=2[\frac{32}{3} ][/tex]
⇒ [tex]A=\frac{64}{3}[/tex]
⇒ [tex]A=21.33[/tex]
Hence we can conclude that the region enclosed by the given curve is integrated with respect to y and the area is 21.33 square units.
Learn more about region enclosed by the curve here
https://brainly.com/question/17145929
#SPJ4
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.