Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
The angle between the two extreme vectors of Sofia bats is 74.60 degrees.
In this question,
The angle between two vectors will be deferred by a single point, which is called as the shortest angle at which we have to turn around one of the vectors to the position of co-directional with another vector.
The extreme vectors of Sofia bats are [tex]\vec u = < -8, 12 >[/tex] and [tex]\vec v = < -8, 12 >[/tex]
The angle between the vectors is
[tex]\theta = cos^{-1} \frac{\vec u.\vec v}{||\vec u|| ||\vec v||}[/tex]
The dot product is calculated as
[tex]\vec u. \vec v = (-8)(13)+(12)(15)[/tex]
⇒ [tex]-104+180[/tex]
⇒ 76
The magnitude can be calculated as
[tex]||\vec u|| = \sqrt{(-8 )^{2} +(12)^{2} }[/tex]
⇒ [tex]\sqrt{64+144}[/tex]
⇒ [tex]\sqrt{208}[/tex]
[tex]||\vec v|| = \sqrt{(13 )^{2} +(15)^{2} }[/tex]
⇒ [tex]\sqrt{169+225}[/tex]
⇒ [tex]\sqrt{394}[/tex]
Thus the angle between the vectors is
[tex]\theta = cos^{-1} \frac{76}{(\sqrt{208} )(\sqrt{394} )}[/tex]
⇒ [tex]\theta = cos^{-1} \frac{76}{\sqrt{81952} }[/tex]
⇒ [tex]\theta = cos^{-1} \frac{76}{286.27 }[/tex]
⇒ [tex]\theta = cos^{-1} (0.2654)[/tex]
⇒ [tex]\theta=74.60[/tex]
Hence we can conclude that the angle between the two extreme vectors of Sofia bats is 74.60 degrees.
Learn more about angle between two vectors here
https://brainly.com/question/19726452
#SPJ4
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.