Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Ariel completed the work below to show that a triangle with side lengths of 9, 15, and 12 does not form a right triangle. 9 squared 15 squared = 12 squared. 81 225 = 144. 306 not-equals 144.

Sagot :

Answer:

Work is incorrect

Step-by-step explanation:

I'm assuming this question is asking whether the work is correct or not? In which case the work is not correct.

The Pythagorean Theorem states: [tex]a^2+b^2=c^2[/tex] where c=hypotenuse, and "a" and "b" are the other two sides. The main thing to note here, is that the hypotenuse is the largest side of all three sides.

So the equation Arial set up: [tex]9^2+15^2=12^2[/tex] is incorrect, since the 15 would need to be on the right side. This forms the correct equation: [tex]9^2+12^2=15^2[/tex] which then simplifies to: [tex]81 + 144 =225 \implies 225=225[/tex].

Thus a right triangle can be formed using these side lengths. You can of course set up a similar equation to Ariels, where the "c" or hypotenuse is not isolated,  but you would have to rearrange the equation so that: [tex]a^2+b^2=c^2\implies b^2=c^2-a^2[/tex] but see how "a squared" is being subtracted from "c squared"? So it's a similar equation to Ariels, but not quite the same, and if she set it up like this, then she would reach the same conclussion

The answer is not correct
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.