Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The Riemann sum with n = 6, taking the sample points to be midpoints is - 12.0625
What is Riemann sum?
Formula for midpoints is given as;
M = ∑0^n-1f((xk + xk + 1)/2) × Δx;
From the information given, we have the following parameters
- x0 = 0
- n = 6
- xn = 3
Let' s find the parameters
Δx = (3 - 0)/6 = 0.5
xk = x0 + kΔx = 0.5k
xk+1 = x0 + (k +1)Δx
Substitute the values
= 0 + 0.5(k +1) = 0.5k - 0.5;(xk + xk+1)/2
We then have;
= (0.5k + 0.5k + 05.)/2
= 0.5k + 0.25.
Now f(x) = 2x^2 - 7
Let's find f((xk + xk+1)/2)
Substitute the value of (xk + xk+1)/2)
= f(0.5k+ 0.25)
= 2(0.5k + 0.25)2 - 7
Put values into formula for midpoint
M = ∑05[(0.5k + 0.25)2 - 7] × 0.5.
To evaluate this sum, use command SUM(SEQ) from List menu.
M = - 12.0625
A Riemann sum represents an approximation of a region's area from addition of the areas of multiple simplified slices of the region.
Thus, the Riemann sum with n = 6, taking the sample points to be midpoints is - 12.0625
Learn more about Riemann sum here:
https://brainly.com/question/84388
#SPJ1
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.