Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
The roots of the given polynomials exists
[tex]$x=8+\sqrt{10},[/tex] and [tex]$ x=8-\sqrt{10}[/tex]
What is the formula of the quadratic equation?
For a quadratic equation of the form [tex]$a x^{2}+b x+c=0$[/tex] the solutions are
[tex]$x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}[/tex]
Therefore by using the formula we have
[tex]$x^{2}-16 x+54=0[/tex]
Let, a = 1, b = -16 and c = 54
Substitute the values in the above equation, and we get
[tex]$x_{1,2}=\frac{-(-16) \pm \sqrt{(-16)^{2}-4 \cdot 1 \cdot 54}}{2 \cdot 1}$[/tex]
simplifying the equation, we get
[tex]$x_{1,2}=\frac{-(-16) \pm 2 \sqrt{10}}{2 \cdot 1}[/tex]
[tex]$x_{1}=\frac{-(-16)+2 \sqrt{10}}{2 \cdot 1}, x_{2}=\frac{-(-16)-2 \sqrt{10}}{2 \cdot 1}$[/tex]
[tex]$x=8+\sqrt{10}, x=8-\sqrt{10}[/tex]
Therefore, the roots of the given polynomials are
[tex]$x=8+\sqrt{10},[/tex] and [tex]$ x=8-\sqrt{10}[/tex].
To learn more about quadratic equations refer to:
https://brainly.com/question/1214333
#SPJ4
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.