Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
The equation of a line that exists perpendicular to line g contains (P, Q) exists x + 4y = 4Q + P.
How to estimate the equation of the line that exists perpendicular to line g that contains (p, q) coordinate plane with line g?
Given: Coordinate plane with line g that passes through the points (-2,6) and (-3,2).
The coordinate of G: (-2,6) and (-3,2)
Let, [tex]${data-answer}amp;\left(x_{1}, y_{1}\right)=(-2,6) \\[/tex] and [tex]${data-answer}amp;\left(x_{2}, y_{2}\right)=(-3,2)[/tex]
The slope of a line [tex]$\mathbf{g}$[/tex] :
[tex]$m &=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\[/tex]
[tex]$m &=\frac{2-6}{-3-(-2)} \\[/tex]
[tex]$m &=\frac{-4}{-1} \\[/tex]
m = 4
So, the slope of a line g exists 4.
To find the slope of a line perpendicular to g,
[tex]${data-answer}amp;m_{1}=-\frac{1}{m} \\[/tex]
[tex]${data-answer}amp;m_{1}=-\frac{1}{4}[/tex]
The equation of the slope point form of the line exists
[tex]$\left(y-y_{1}\right)=m\left(x-x_{1}\right)$[/tex]
[tex]$y-Q=-\frac{1}{4}(x-P)$[/tex]
[tex]$4 y-4 Q=-x+P$[/tex]
[tex]$x+4 y=4 Q+P$[/tex]
Therefore, the equation of a line that exists perpendicular to line g contains (P, Q) exists x + 4y = 4Q + P.
To learn more about the equation of line refer to:
https://brainly.com/question/11552995
#SPJ4
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.