At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
The kinetic energy of the ejected electron (photoelectron) is equal to the energy of the photon minus the work function (E required to eject the photoelectron).
The process of final kinetic energy of the electron upon reaching the anode compare to its initial potential energy immediately after it has been ejected -
- The electron has a lot of potential energy and very little kinetic energy when it is liberated from the cathode (as it is not moving yet or moving very slowly).
- We are currently on the left side of the picture above. The electron accelerates and speeds up as it goes away from the cathode and toward the anode. As a result, the kinetic energy rises.
- The electron is likely to have the highest kinetic energy and the lowest potential energy when it reaches the anode.
- Therefore, the kinetic energy at the end of the electron's journey is approximately equal as the potential energy at the beginning (when the electron was released).
Learn more about kinetic energy
brainly.com/question/15764612
#SPJ4

We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.