Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
The velocity of an electron that has been accelerated through a difference of potential of 100 volts will be 5.93 * [tex]10^{6}[/tex] m/s
Electrons move because they get pushed by some external force. There are several energy sources that can force electrons to move. Voltage is the amount of push or pressure that is being applied to the electrons.
By conservation of energy, the kinetic energy has to equal the change in potential energy, so KE=q*V. The energy of the electron in electron-volts is numerically the same as the voltage between the plates.
given
charge of electron = 1.6 × [tex]10^{-19}[/tex] C
mass of electron = 9.1 × [tex]10^{-31}[/tex] kg
Force in an electric field = q*E
potential energy is stored in the form of work done
potential energy = work done = Force * displacement
= q * (E * d)
= q * (V) = 1.6 × [tex]10^{-19}[/tex] * 100
stored potential energy = kinetic energy in electric field
kinetic energy = 1/2 * m * [tex]v^{2}[/tex]
= 1/2 * 9.1 × [tex]10^{-31}[/tex] * [tex]v^{2}[/tex]
equation both the equations
1/2 * 9.1 × [tex]10^{-31}[/tex] * [tex]v^{2}[/tex] = 1.6 × [tex]10^{-17}[/tex]
[tex]v^{2}[/tex] = 0.352 * [tex]10^{14}[/tex] m/s
[tex]v^{2}[/tex] = 35.2 * [tex]10^{12}[/tex]
= 5.93 * [tex]10^{6}[/tex] m/s
To learn more about kinetic energy in electric field here
https://brainly.com/question/8666051
#SPJ4
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.