Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
The area of the resulting surface of this infinite curve is π units.
In this question,
The infinite curve is y = e^−2x, x ≥ 0.
The curve is rotated about x-axis.
Since x ≥ 0, the limits will be 0 to ∞.
Then the area of the resulting surface is,
[tex]A= 2\pi \lim_{b\to \infty} (\int\limits^\infty_0{e^{-2x} } \, dx )[/tex]
Now substitute,
u = -2x
⇒ du = -2dx
⇒ dx = [tex]-\frac{1}{2} du[/tex]
Then,
[tex]\int\limits{-\frac{1}{2}e^{u} } \, du =-\frac{1}{2}\int\limits{e^{u} } \, du[/tex]
Now substitute u and du, we get
⇒ [tex]-\frac{1}{2} \int\limits {e^{-2x} }(-2) \, dx[/tex]
⇒ [tex]-\frac{-2}{2} \int\limits {e^{-2x} } \, dx[/tex]
⇒ [tex](1) \int\limits {e^{-2x} } \, dx[/tex]
⇒ [tex]\int\limits {e^{-2x} } \, dx[/tex]
Thus the area of the resulting surface is
[tex]A= 2\pi \int\limits^\infty_0{e^{-2x} } \, dx[/tex]
⇒ [tex]A= 2\pi [{e^{-2x}(\frac{1}{-2} ) } \,]\limits^\infty_0[/tex]
⇒ [tex]A= \frac{2\pi}{-2} [{e^{-2(\infty)}-e^{-2(0)} } \,]\\[/tex]
⇒ [tex]A= -\pi [0-1} \,]\\[/tex]
⇒ [tex]A= \pi[/tex]
Hence we can conclude that the area of the resulting surface is π units.
Learn more about area of infinite curve here
https://brainly.com/question/3139455
#SPJ4
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.