Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
[tex]~~~~~~\textit{initial velocity in feet} \\\\ h(t) = -16t^2+v_ot+h_o \quad \begin{cases} v_o=\textit{initial velocity}&96\\ \qquad \textit{of the object}\\ h_o=\textit{initial height}&160\\ \qquad \textit{of the object}\\ h=\textit{object's height}&h\\ \qquad \textit{at "t" seconds} \end{cases} \\\\\\ h(t)=-16t^2+96t+160[/tex]
Check the picture below.
[tex]\textit{vertex of a vertical parabola, using coefficients} \\\\ y=\stackrel{\stackrel{a}{\downarrow }}{-16}x^2\stackrel{\stackrel{b}{\downarrow }}{+96}x\stackrel{\stackrel{c}{\downarrow }}{+160} \qquad \qquad \left(-\cfrac{ b}{2 a}~~~~ ,~~~~ c-\cfrac{ b^2}{4 a}\right) \\\\\\ \left(-\cfrac{ 96}{2(-16)}~~~~ ,~~~~ 160-\cfrac{ (96)^2}{4(-16)}\right) \implies \left( - \cfrac{ 96 }{ -32 }~~,~~160 - \cfrac{ 9216 }{ -64 } \right)[/tex]
[tex](3~~,~~160 + 144)\implies \underset{~\hfill feet}{\stackrel{seconds~\hfill }{(\stackrel{\downarrow }{3}~~,~~\underset{\uparrow }{304})}}[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.