Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The vertex form of the equation f(x) = x^2 - 3x, is f(x) = (x - 3/2)^2 - 9/5
How to rewrite the quadratic function?
The quadratic function is given as:
f(x) = x^2 - 3x
Differentiate the function
f'(x) = 2x - 3
Set the function to 0
2x - 3 = 0
Add 3 to both sides
2x = 3
Divide by 2
x = 3/2
Set x = 3/2 in f(x) = x^2 - 3x
f(x) = 3/2^2 - 3 * 3/2
Evaluate
f(x) = -9/5
So, we have:
(x, f(x)) = (3/2, -9/5)
The above represents the vertex of the quadratic function.
This is properly written as:
(h, k) = (3/2, -9/5)
The vertex form of a quadratic function is
f(x) = a(x - h)^2 + k
So, we have:
f(x) = a(x - 3/2)^2 - 9/5
In f(x) = x^2 - 3x,
a = 1
So, we have:
f(x) = (x - 3/2)^2 - 9/5
Hence, the vertex form of the equation f(x) = x^2 - 3x, is f(x) = (x - 3/2)^2 - 9/5
Read more about vertex form at
https://brainly.com/question/24850937
#SPJ1
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.