At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Using the binomial distribution, there is a 0.3474 = 34.74% probability of getting one wrong number.
What is the binomial distribution formula?
The formula is:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
For this problem, the values of the parameters are given by:
p = 0.15, n = 10.
The probability of getting one wrong number is P(X = 1), hence:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
P(X = 1) = C(10,1) x (0.15)¹ x (0.85)^9 = 0.3474
0.3474 = 34.74% probability of getting one wrong number.
More can be learned about the binomial distribution at https://brainly.com/question/24863377
#SPJ1
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.