Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Using the binomial distribution, there is a 0.0874 = 8.74% probability that not enough seats will be available.
What is the binomial distribution formula?
The formula is:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
For this problem, the values of the parameters are given by:
n = 15, p = 0.85.
The probability that not enough seats will be available is P(X = 15), as the only outcome in which not enough seats will be available is when all 15 people who bought the ticket show up, hence:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 15) = C_{15,15}.(0.85)^{15}.(0.15)^{0} = 0.0874[/tex]
0.0874 = 8.74% probability that not enough seats will be available.
More can be learned about the binomial distribution at https://brainly.com/question/24863377
#SPJ1
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.