Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Two uncharged spheres are separated by 1.70 m. If 2.40 ✕ 10¹² electrons are removed from one sphere and placed on the other, determine the magnitude of the Coulomb force (in N) on one of the spheres, treating the spheres as point charges.


_______N

**Hint** Find the net charge on each sphere and substitute values into Coulomb's law.

Sagot :

The magnitude of the Coulomb force (in N) on one of the spheres, given the data is 4.59×10⁻⁴ N

How to determine the charge on each spheres

Sphere 1 losses 2.40×10¹² electrons

But

1 electron = 1.6x10¯¹⁹ C

Thus,

Charge on sphere 1 = +1.6x10¯¹⁹ × 2.40×10¹² = +3.84×10¯⁷ C

Sphere 2 gains 2.40×10¹² electrons

But

1 electron = 1.6x10¯¹⁹ C

Thus,

Charge on sphere 2 = -1.6x10¯¹⁹ × 2.40×10¹² = -3.84×10¯⁷ C

How to determine the coulomb force

  • Charge on sphere 1 (q₁) = +3.84×10¯⁷ C
  • Charge on sphere 2 (q₂) = 3.60 mC = -3.84×10¯⁷ C
  • Electric constant (K) = 9×10⁹ Nm²/C²
  • Distance apart (r) = 1.7 m
  • Force (F) =?

Using the Coulomb's law equation, the force can be obtained as illustrated below:

F = Kq₁q₂ / r²

F = (9×10⁹ × 3.84×10¯⁷ × 3.84×10¯⁷) / (1.7)²

F = 4.59×10⁻⁴ N

Thus, the magnitude of the Coulomb's force is 4.59×10⁻⁴ N

Learn more about Coulomb's law:

https://brainly.com/question/506926

#SPJ1

We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.