Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Using the normal distribution, there is a 0.1894 = 18.94% probability that the sample average will exceed $75.
Normal Probability Distribution
The z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
The parameters for this problem are given as follows:
[tex]\mu = 70, \sigma = 40, n = 50, s = \frac{40}{\sqrt{50}} = 5.66[/tex]
The probability that the sample average will exceed $75 is one subtracted by the p-value of Z when X = 75, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
Z = (75 - 70)/5.66
Z = 0.88
Z = 0.88 has a p-value of 0.8106.
1 - 0.8106 = 0.1894.
0.1894 = 18.94% probability that the sample average will exceed $75.
More can be learned about the normal distribution at https://brainly.com/question/28096232
#SPJ1
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.