At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

If tan A 3/4 find the value of: sin2A​

Sagot :

Answer:

24/25

Step-by-step explanation:

use tan^-1 to find the angle

tan^-1(3/4)=36.86989765°

A =36.86989765°

2A= 2×36.86989765

=73.73979529°

sin2A>>>>sin(73.73979529°)

=24/25 or 0.96

Answer:

sin2A = [tex]\frac{24}{25}[/tex]

Step-by-step explanation:

using the identity

sin2A = 2sinAcosA

given

tan2A = [tex]\frac{3}{4}[/tex] = [tex]\frac{opposite}{adjacent}[/tex]

then this is a 3- 4- 5 right triangle with

hypotenuse = 5, opposite = 3 , adjacent = 4 , then

sinA = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{3}{5}[/tex] and cosA = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{4}{5}[/tex]

Then

sin2A = 2 × [tex]\frac{3}{5}[/tex] × [tex]\frac{4}{5}[/tex] = [tex]\frac{2(3)(4)}{5(5)}[/tex] = [tex]\frac{24}{25}[/tex]