Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Based on the calculations, the coordinates of the point of congruency of the altitudes (H) are (-160/11, 40/11).
What is a triangle?
A triangle can be defined as a two-dimensional geometric shape that comprises three (3) sides, three (3) vertices and three (3) angles only.
What is a slope?
A slope is also referred to as gradient and it's typically used to describe both the ratio, direction and steepness of the function of a straight line.
How to determine a slope?
Mathematically, the slope of a straight line can be calculated by using this formula;
[tex]Slope, m = \frac{Change\;in\;y\;axis}{Change\;in\;x\;axis}\\\\Slope, m = \frac{y_2\;-\;y_1}{x_2\;-\;x_1}[/tex]
Assuming the following parameters for triangle ABC:
- Let AM be the altitudes on BC.
- Let BN be the altitudes on CA.
- Let CL be the altitudes on AB.
For the slope of BC, we have:
Slope of BC = (2 - 8)/(4 - 0)
Slope of BC = -6/4
Slope of BC = -3/2.
For the slope of CA, we have:
Slope of CA = (2 - 0)/(4 - (-2))
Slope of CA = 2/6
Slope of CA = 1/3.
For the slope of AB, we have:
Slope of AB = (8 - 0)/(0 - (-2))
Slope of AB = 8/2
Slope of AB = 4.
Note: The point of concurrency of three altitudes in a triangle is referred to as orthocenter.
Since side AB is perpendicular to side QC, we have:
m₁ × m₂ = -1
Slope of AB × Slope of QC = -1
Slope of QC = (k - 4)/(h - 2)
4 × (k - 4)/(h - 2) = -1
(4k - 16)/(h - 2) = -1
4k - 16 = -h + 2
4k + h = 18 .......equation 1.
Similarly, we have the following:
Slope of BC × Slope of AH = -1
-3/2 × (k)/(h + 2) = -1
3k/(2h + 4) = 1
3k = 2h + 4
3k - 2h = 4 .......equation 2.
Solving eqn. 1 and eqn. 2 simultaneously, we have:
8k + 2h = 36
3k - 2h = 4
11k = 40
k = 40/11.
For the value of h, we have:
h = -4k
h = -4 × (40/11)
h = -160/11
Therefore, the coordinates of the point of congruency of the altitudes (H) are (-160/11, 40/11).
Read more on point of congruency here: https://brainly.com/question/14375863
#SPJ1
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.