Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Using the z-distribution, the 95% confidence interval to describe the total percentage of students who do not like ice cream is:
(8.34%, 17.66%).
What is a confidence interval of proportions?
A confidence interval of proportions is given by:
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which:
- [tex]\pi[/tex] is the sample proportion.
- z is the critical value.
- n is the sample size.
In this problem, we have a 95% confidence level, hence[tex]\alpha = 0.95[/tex], z is the value of Z that has a p-value of [tex]\frac{1+0.95}{2} = 0.975[/tex], so the critical value is z = 1.96.
For this problem, the estimate and the sample size are given, respectively, by:
[tex]\pi = 0.13, n = 200[/tex]
Hence the bounds of the interval are:
- [tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.13 - 1.96\sqrt{\frac{0.13(0.87)}{200}} = 0.0834[/tex]
- [tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.13 + 1.96\sqrt{\frac{0.13(0.87)}{200}} = 0.1766[/tex]
As a percentage, the interval is:
(8.34%, 17.66%).
More can be learned about the z-distribution at https://brainly.com/question/25890103
#SPJ1
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.