Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The range of the function f(x) is (-∝, 3]
Part A: Graph the piecewise function
The function definition is given as:
[tex]f(x) = \left[\begin{array}{cc}3^{x-1}-4&x\le 3\\ \frac{-x^2 + 3x + 4}{x^2 - 7x + 12}&x > 3\end{array}\right[/tex]
There are two sub-functions and the domains in the above definition.
Each function would be plotted alongside its domain.
See attachment for the graph of the function f(x)
From the graph of the function, we have the following range of f(x)
Minimum = Negative Infinity
Maximum = 5
Hence, the range of the function f(x) is (-∝, 3]
The asymptotes of f(x)
We have the domains to be
x <= 3 and x > 3
This means that the asymptote of f(x) is x = 3
The end behavior of f(x)
From the graph, we have:
- f(x) increases as x increases
- f(x) decreases as x decreases
This means that the end behavior of f(x) is as x approaches +∝, the function approaches +∝ and as x approaches -∝, the function approaches -∝
Read more about functions at:
https://brainly.com/question/27262465
#SPJ1
Complete question
A piecewise function f (x) is defined by
[tex]f(x) = \left[\begin{array}{cc}3^{x-1}-4&x\le 3\\ \frac{-x^2 + 3x + 4}{x^2 - 7x + 12}&x > 3\end{array}\right[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.