Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
The range of the function f(x) is (-∝, 3]
Part A: Graph the piecewise function
The function definition is given as:
[tex]f(x) = \left[\begin{array}{cc}3^{x-1}-4&x\le 3\\ \frac{-x^2 + 3x + 4}{x^2 - 7x + 12}&x > 3\end{array}\right[/tex]
There are two sub-functions and the domains in the above definition.
Each function would be plotted alongside its domain.
See attachment for the graph of the function f(x)
From the graph of the function, we have the following range of f(x)
Minimum = Negative Infinity
Maximum = 5
Hence, the range of the function f(x) is (-∝, 3]
The asymptotes of f(x)
We have the domains to be
x <= 3 and x > 3
This means that the asymptote of f(x) is x = 3
The end behavior of f(x)
From the graph, we have:
- f(x) increases as x increases
- f(x) decreases as x decreases
This means that the end behavior of f(x) is as x approaches +∝, the function approaches +∝ and as x approaches -∝, the function approaches -∝
Read more about functions at:
https://brainly.com/question/27262465
#SPJ1
Complete question
A piecewise function f (x) is defined by
[tex]f(x) = \left[\begin{array}{cc}3^{x-1}-4&x\le 3\\ \frac{-x^2 + 3x + 4}{x^2 - 7x + 12}&x > 3\end{array}\right[/tex]

Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.