Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
A simultaneous equation is a set of equations that has to be solved in relation to each other at the same time. Thus the required number of stamps are:
4¢ stamps = 16
5¢ stamps = 7
A simultaneous equation is a set of equations that has to be solved in relation to each other at the same time. This process is required so as to determine the values of two unknowns e.g x and y.
From the given question, let the number of 4¢ stamps be represented by n, and that of the 9¢ stamp be represented by m.
So that,
n + m = 23 ............ 1
But 100¢ = $1, so that;
4¢ = x
x = [tex]\frac{4}{100}[/tex]
= $0.04
also,
9¢ = x
x = [tex]\frac{9}{100}[/tex]
= $0.09
Thus, we have;
0.04n + 0.09m = 1.27 ......... 2
From equation 1, make n the subject of the formula, such that;
n = 23 - m ........... 3
Substitute equation 3 into equation 2
0.04(23 - m) + 0.09m = 1.27
0.92 - 0.04m + 0.09m = 1.27
collect like terms to have;
0.05m = 1.27 - 0.92
= 0.35
m = [tex]\frac{0.35}{0.05}[/tex]
m = 7
Now substitute the value of m into equation 3
n = 23 - m ........... 3
= 23 - 7
n = 16
Therefore the number of 4¢ stamps is 16, while that of the 5¢ stamps is 7.
For more clarifications on the simultaneous equations, visit: https://brainly.com/question/15165519
#SPJ 1
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.