Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The lowest common multiple of the expressions 3xyz^2 and 9x^2y + 9x^2 is 9x^2z^2(y + 1)
How to determine the lowest common multiple?
The expressions are given as:
3xyz^2 and 9x^2y + 9x^2
Factorize the expressions
3xyz^2 = 3 * x * y * z * z
9x^2y + 9x^2 = 3 * 3 * x * x * (y + 1)
Multiply the common factors, without repetition
LCM = 3 * 3 * x * x * (y + 1) * z* z
Evaluate the product
LCM = 9x^2z^2(y + 1)
Hence, the lowest common multiple of the expressions 3xyz^2 and 9x^2y + 9x^2 is 9x^2z^2(y + 1)
Read more about lowest common multiple at
https://brainly.com/question/10749076
#SPJ1
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.