Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
The lowest common multiple of the expressions 3xyz^2 and 9x^2y + 9x^2 is 9x^2z^2(y + 1)
How to determine the lowest common multiple?
The expressions are given as:
3xyz^2 and 9x^2y + 9x^2
Factorize the expressions
3xyz^2 = 3 * x * y * z * z
9x^2y + 9x^2 = 3 * 3 * x * x * (y + 1)
Multiply the common factors, without repetition
LCM = 3 * 3 * x * x * (y + 1) * z* z
Evaluate the product
LCM = 9x^2z^2(y + 1)
Hence, the lowest common multiple of the expressions 3xyz^2 and 9x^2y + 9x^2 is 9x^2z^2(y + 1)
Read more about lowest common multiple at
https://brainly.com/question/10749076
#SPJ1
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.