Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Using the normal distribution, it is found that:
a. A male sailor whose waist is 34.1 inches is at the 87.5th percentile.
b. 5.7% of male sailors requires custom uniform pants.
Normal Probability Distribution
The z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
The mean and the standard deviation are given, respectively, by:
[tex]\mu = 32.6, \sigma = 1.3[/tex]
For item a, the percentile is the p-value of Z when X = 34.1, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
Z = (34.1 - 32.6)/1.3
Z = 1.15
Z = 1.15 has a p-value of 0.875.
Hence 87.5th percentile.
For item b, the proportion who does not require an special order is the p-value of Z when X = 36 subtracted by the p-value of Z when X = 30, hence:
X = 36:
Z = (36 - 32.6)/1.3
Z = 2.62
Z = 2.62 has a p-value of 0.996.
X = 30:
Z = (30 - 32.6)/1.3
Z = -2
Z = -2 has a p-value of 0.023.
0.996 - 0.023 = 0.943.
Hence the proportion who requires an special order is:
1 - 0.943 = 0.057.
5.7% of male sailors requires custom uniform pants.
More can be learned about the normal distribution at https://brainly.com/question/15181104
#SPJ1
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.