Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Using the normal distribution, it is found that:
a. A male sailor whose waist is 34.1 inches is at the 87.5th percentile.
b. 5.7% of male sailors requires custom uniform pants.
Normal Probability Distribution
The z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
The mean and the standard deviation are given, respectively, by:
[tex]\mu = 32.6, \sigma = 1.3[/tex]
For item a, the percentile is the p-value of Z when X = 34.1, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
Z = (34.1 - 32.6)/1.3
Z = 1.15
Z = 1.15 has a p-value of 0.875.
Hence 87.5th percentile.
For item b, the proportion who does not require an special order is the p-value of Z when X = 36 subtracted by the p-value of Z when X = 30, hence:
X = 36:
Z = (36 - 32.6)/1.3
Z = 2.62
Z = 2.62 has a p-value of 0.996.
X = 30:
Z = (30 - 32.6)/1.3
Z = -2
Z = -2 has a p-value of 0.023.
0.996 - 0.023 = 0.943.
Hence the proportion who requires an special order is:
1 - 0.943 = 0.057.
5.7% of male sailors requires custom uniform pants.
More can be learned about the normal distribution at https://brainly.com/question/15181104
#SPJ1
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.