Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The equation 23 · y + 50 + 27 · y = 50 · y + 50 has infinite solutions.
How to infer the number of solutions of a linear equation of the form f(y) = 0
In this question we have an equation in implicit form: 23 · y + 50 + 27 · y = 50 · y + 50, we need to transform its expression into explicit form by using algebra properties:
23 · y + 50 + 27 · y = 50 · y + 50 Given
50 · y + 50 = 50 · y + 50 Commutative, associative and distributive properties / Definition of addition
0 = 0 Compatibility with addition / Existence of additive inverse / Modulative property / Result
The equivalence indicates that the equation 23 · y + 50 + 27 · y = 50 · y + 50 has infinite solutions.
To learn more on linear equations: https://brainly.com/question/11897796
#SPJ1
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.