Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The Jacobian for this transformation is
[tex]J = \begin{bmatrix} x_u & x_v \\ y_u & y_v \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}[/tex]
with determinant [tex]|J| = 12[/tex], hence the area element becomes
[tex]dA = dx\,dy = 12 \, du\,dv[/tex]
Then the integral becomes
[tex]\displaystyle \iint_{R'} 4x^2 \, dA = 768 \iint_R u^2 \, du \, dv[/tex]
where [tex]R'[/tex] is the unit circle,
[tex]\dfrac{x^2}{16} + \dfrac{y^2}9 = \dfrac{(4u^2)}{16} + \dfrac{(3v)^2}9 = u^2 + v^2 = 1[/tex]
so that
[tex]\displaystyle 768 \iint_R u^2 \, du \, dv = 768 \int_{-1}^1 \int_{-\sqrt{1-v^2}}^{\sqrt{1-v^2}} u^2 \, du \, dv[/tex]
Now you could evaluate the integral as-is, but it's really much easier to do if we convert to polar coordinates.
[tex]\begin{cases} u = r\cos(\theta) \\ v = r\sin(\theta) \\ u^2+v^2 = r^2\\ du\,dv = r\,dr\,d\theta\end{cases}[/tex]
Then
[tex]\displaystyle 768 \int_{-1}^1 \int_{-\sqrt{1-v^2}}^{\sqrt{1-v^2}} u^2\,du\,dv = 768 \int_0^{2\pi} \int_0^1 (r\cos(\theta))^2 r\,dr\,d\theta \\\\ ~~~~~~~~~~~~ = 768 \left(\int_0^{2\pi} \cos^2(\theta)\,d\theta\right) \left(\int_0^1 r^3\,dr\right) = \boxed{192\pi}[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.