Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Since [tex]a_1,a_2,a_3,\cdots[/tex] are in arithmetic progression,
[tex]a_2 = a_1 + 2[/tex]
[tex]a_3 = a_2 + 2 = a_1 + 2\cdot2[/tex]
[tex]a_4 = a_3+2 = a_1+3\cdot2[/tex]
[tex]\cdots \implies a_n = a_1 + 2(n-1)[/tex]
and since [tex]b_1,b_2,b_3,\cdots[/tex] are in geometric progression,
[tex]b_2 = 2b_1[/tex]
[tex]b_3=2b_2 = 2^2 b_1[/tex]
[tex]b_4=2b_3=2^3b_1[/tex]
[tex]\cdots\implies b_n=2^{n-1}b_1[/tex]
Recall that
[tex]\displaystyle \sum_{k=1}^n 1 = \underbrace{1+1+1+\cdots+1}_{n\,\rm times} = n[/tex]
[tex]\displaystyle \sum_{k=1}^n k = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}2[/tex]
It follows that
[tex]a_1 + a_2 + \cdots + a_n = \displaystyle \sum_{k=1}^n (a_1 + 2(k-1)) \\\\ ~~~~~~~~ = a_1 \sum_{k=1}^n 1 + 2 \sum_{k=1}^n (k-1) \\\\ ~~~~~~~~ = a_1 n + n(n-1)[/tex]
so the left side is
[tex]2(a_1+a_2+\cdots+a_n) = 2c n + 2n(n-1) = 2n^2 + 2(c-1)n[/tex]
Also recall that
[tex]\displaystyle \sum_{k=1}^n ar^{k-1} = \frac{a(1-r^n)}{1-r}[/tex]
so that the right side is
[tex]b_1 + b_2 + \cdots + b_n = \displaystyle \sum_{k=1}^n 2^{k-1}b_1 = c(2^n-1)[/tex]
Solve for [tex]c[/tex].
[tex]2n^2 + 2(c-1)n = c(2^n-1) \implies c = \dfrac{2n^2 - 2n}{2^n - 2n - 1} = \dfrac{2n(n-1)}{2^n - 2n - 1}[/tex]
Now, the numerator increases more slowly than the denominator, since
[tex]\dfrac{d}{dn}(2n(n-1)) = 4n - 2[/tex]
[tex]\dfrac{d}{dn} (2^n-2n-1) = \ln(2)\cdot2^n - 2[/tex]
and for [tex]n\ge5[/tex],
[tex]2^n > \dfrac4{\ln(2)} n \implies \ln(2)\cdot2^n - 2 > 4n - 2[/tex]
This means we only need to check if the claim is true for any [tex]n\in\{1,2,3,4\}[/tex].
[tex]n=1[/tex] doesn't work, since that makes [tex]c=0[/tex].
If [tex]n=2[/tex], then
[tex]c = \dfrac{4}{2^2 - 4 - 1} = \dfrac4{-1} = -4 < 0[/tex]
If [tex]n=3[/tex], then
[tex]c = \dfrac{12}{2^3 - 6 - 1} = 12[/tex]
If [tex]n=4[/tex], then
[tex]c = \dfrac{24}{2^4 - 8 - 1} = \dfrac{24}7 \not\in\Bbb N[/tex]
There is only one value for which the claim is true, [tex]c=12[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.