At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
[tex](x^2 - y^2) \, dx + 2xy \, dy = 0[/tex]
Multiply both sides by [tex]\frac1{x^2}[/tex].
[tex]\left(1 - \dfrac{y^2}{x^2}\right) \, dx + \dfrac{2y}x \, dy = 0[/tex]
Substitute [tex]y=vx[/tex], so [tex]v=\frac yx[/tex] and [tex]dy=x\,dv+v\,dx[/tex].
[tex](1-v^2) \, dx + 2v (x\,dv + v\,dx) = 0[/tex]
[tex](1 + v^2) \, dx + 2xv \, dv = 0[/tex]
Separate the variables.
[tex]2xv\,dv = -(1 + v^2) \, dx[/tex]
[tex]\dfrac{v}{1+v^2}\,dv = -\dfrac{dx}{2x}[/tex]
Integrate both sides
[tex]\displaystyle \int \frac{v}{1+v^2}\,dv = -\frac12 \int \frac{dx}x[/tex]
On the left side, substitute [tex]w=1+v^2[/tex] and [tex]dw=2v\,dv[/tex].
[tex]\displaystyle \frac12 \int \frac{dw}w = -\frac12 \int\frac{dx}x[/tex]
[tex]\displaystyle \ln|w| = -\ln|x| + C[/tex]
Solve for [tex]w[/tex], then [tex]v[/tex], then [tex]y[/tex].
[tex]e^{\ln|w|} = e^{-\ln|x| + C}[/tex]
[tex]w = e^C e^{\ln|x^{-1}|}[/tex]
[tex]w = Cx^{-1}[/tex]
[tex]1 + v^2 = Cx^{-1}[/tex]
[tex]1 + \dfrac{y^2}{x^2} = Cx^{-1}[/tex]
[tex]\implies \boxed{x^2 + y^2 = Cx}[/tex]
Your mistake is in the first image, between third and second lines from the bottom. (It may not be the only one, it's the first one that matters.)
You incorrectly combine the fractions on the left side.
[tex]\dfrac1{-2v} -\dfrac v{-2} = \dfrac1{-2v} - \dfrac{v^2}{-2v} = \dfrac{1-v^2}{-2v} = \dfrac{v^2-1}{2v}[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.