Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Line A passes through the points (-8, 5) and (-5, 4). Line B passes through the points (0, 1) and (4, -1). Which of the following describes the relationship between line A an line B?
1. Lines A and B are parallel, because they have opposite reciprocal slopes.
2. Lines A and B are parallel, because they have the same slope
3. Lines A and B intersect, because their slopes have no relationship.
4. Lines A and B are perpendicular, because they have opposite reciprocal slopes.


Sagot :

[tex]\stackrel{\textit{\LARGE Line A}}{(\stackrel{x_1}{-8}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{-5}~,~\stackrel{y_2}{4})} ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{4}-\stackrel{y1}{5}}}{\underset{run} {\underset{x_2}{-5}-\underset{x_1}{(-8)}}} \implies \cfrac{4 -5}{-5 +8}\implies -\cfrac{1}{3} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\stackrel{\textit{\LARGE Line B}}{(\stackrel{x_1}{0}~,~\stackrel{y_1}{1})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{-1})} ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-1}-\stackrel{y1}{1}}}{\underset{run} {\underset{x_2}{4}-\underset{x_1}{0}}} \implies \cfrac{-1 -1}{4 +0}\implies -\cfrac{1}{2}[/tex]

keeping in mind that perpendicular lines have negative reciprocal slopes, and that parallel lines have equal slopes, well, those two slopes above aren't either, so since they're neither, and they're different, that means that lines A and B intersect.