Answer:
a) 12.56 m/s
b) up: 14.63 m/s (2 d.p.)
down: -14.63 m/s (2 d.p.)
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{9 cm}\underline{The Constant Acceleration Equations (SUVAT)}\\\\s = displacement in m (meters)\\u = initial velocity in m s$^{-1}$ (meters per second)\\v = final velocity in m s$^{-1}$ (meters per second)\\a = acceleration in m s$^{-2}$ (meters per second per second)\\t = time in s (seconds)\\\\When using SUVAT, assume the object is modeled\\ as a particle and that acceleration is constant.\end{minipage}}[/tex]
The average gravitational acceleration on Mars is 3.721 m/s² (about 38% of that of Earth). The fact that the rock is thrown from the surface of Mars rather than the surface of Earth is of no consequence when using the equations of constant acceleration (SUVAT equations) as long as acceleration is not used in the calculations.
Part (a)
Given:
[tex]s=20t-1.86t^2, \quad u=20, \quad t=2[/tex]
[tex]\begin{aligned}\textsf{Using }\: s&=\dfrac{1}{2}(u+v)t\\\\\implies 20(2)-1.86(2)^2 & = \dfrac{1}{2}(20+v)(2)\\\\32.56 & = 20+v\\\\v & = 32.56-20\\\\v & = 12.56\:\: \sf m/s\end{aligned}[/tex]
Therefore, the velocity of the rock after 2 s is 12.56 m/s.
Part (b)
Find the time when the height of the rock is 25 m:
[tex]\begin{aligned}20t-1.86t^2 & = s\\\implies 20t-1.86t^2 & = 25\\1.86t^2-20t+25 & = 0\end{aligned}[/tex]
Quadratic Formula
[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac} }{2a}\quad\textsf{when }\:ax^2+bx+c=0[/tex]
Therefore:
[tex]a=1.86, \quad b=-20, \quad c=25[/tex]
[tex]\implies t=\dfrac{-(-20) \pm \sqrt{(-20)^2-4(1.86)(25)} }{2(1.86)}[/tex]
[tex]\implies t=\dfrac{20 \pm \sqrt{214}}{3.72}[/tex]
[tex]\implies t=9.308800763..., 1.443887409...[/tex]
Therefore, the height of the rock is 25 m when:
- t = 9.31 s (2 d.p.)
- t = 1.44 s (2 d.p.)
To find the velocity (v) of the rock at these times, substitute the found values of t into the equation, along with s = 25 and u 20 m/s:
[tex]\begin{aligned}\textsf{Using }\: s&=\dfrac{1}{2}(u+v)t\\\\\implies v & = \dfrac{2s}{t}-u\\\\v & = \dfrac{2(25)}{t}-20\\\\v & = \dfrac{50}{t}-20\\\\\end{aligned}[/tex]
When t = 1.443887409...s
[tex]\implies v=\dfrac{50}{1.443887409...}-20=14.63\:\: \sf m/s \: \:(2\:d.p.)[/tex]
When t = 9.308800763...s
[tex]\implies v=\dfrac{50}{9.308800763...}-20=-14.63\:\: \sf m/s \: \:(2\:d.p.)[/tex]
Therefore, the velocity of the rock when its height is 25 m is:
- up: 14.63 m/s (2 d.p.)
- down: -14.63 m/s (2 d.p.)
Learn more about constant acceleration equations here:
https://brainly.com/question/28211552
https://brainly.com/question/28202782