Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Splitting up [0, 3] into [tex]n[/tex] equally-spaced subintervals of length [tex]\Delta x=\frac{3-0}n = \frac3n[/tex] gives the partition
[tex]\left[0, \dfrac3n\right] \cup \left[\dfrac3n, \dfrac6n\right] \cup \left[\dfrac6n, \dfrac9n\right] \cup \cdots \cup \left[\dfrac{3(n-1)}n, 3\right][/tex]
where the right endpoint of the [tex]i[/tex]-th subinterval is given by the sequence
[tex]r_i = \dfrac{3i}n[/tex]
for [tex]i\in\{1,2,3,\ldots,n\}[/tex].
Then the definite integral is given by the infinite Riemann sum
[tex]\displaystyle \int_0^3 2x^2 \, dx = \lim_{n\to\infty} \sum_{i=1}^n 2{r_i}^2 \Delta x \\\\ ~~~~~~~~ = \lim_{n\to\infty} \frac6n \sum_{i=1}^n \left(\frac{3i}n\right)^2 \\\\ ~~~~~~~~ = \lim_{n\to\infty} \frac{54}{n^3} \sum_{i=1}^n i^2 \\\\ ~~~~~~~~ = \lim_{n\to\infty} \frac{54}{n^3}\cdot\frac{n(n+1)(2n+1)}6 = \boxed{18}[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.