At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Splitting up [0, 3] into [tex]n[/tex] equally-spaced subintervals of length [tex]\Delta x=\frac{3-0}n = \frac3n[/tex] gives the partition
[tex]\left[0, \dfrac3n\right] \cup \left[\dfrac3n, \dfrac6n\right] \cup \left[\dfrac6n, \dfrac9n\right] \cup \cdots \cup \left[\dfrac{3(n-1)}n, 3\right][/tex]
where the right endpoint of the [tex]i[/tex]-th subinterval is given by the sequence
[tex]r_i = \dfrac{3i}n[/tex]
for [tex]i\in\{1,2,3,\ldots,n\}[/tex].
Then the definite integral is given by the infinite Riemann sum
[tex]\displaystyle \int_0^3 2x^2 \, dx = \lim_{n\to\infty} \sum_{i=1}^n 2{r_i}^2 \Delta x \\\\ ~~~~~~~~ = \lim_{n\to\infty} \frac6n \sum_{i=1}^n \left(\frac{3i}n\right)^2 \\\\ ~~~~~~~~ = \lim_{n\to\infty} \frac{54}{n^3} \sum_{i=1}^n i^2 \\\\ ~~~~~~~~ = \lim_{n\to\infty} \frac{54}{n^3}\cdot\frac{n(n+1)(2n+1)}6 = \boxed{18}[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.