Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The nth term of the sequence is 2n - 8
Equation of a function
The nth term of an arithmetic progression is expressed as;
Tn = a + (n - 1)d
where
a is the first term
d is the common difference
n is the number of terms
Given the following parameters
a = f(1)=−6
f(2) = −4
Determine the common difference
d = f(2) - f(1)
d = -4 - (-6)
d = -4 + 6
d = 2
Determine the nth term of the sequence
Tn = -6 + (n -1)(2)
Tn = -6+2n-2
Tn = 2n - 8
Hence the nth term of the sequence is 2n - 8
Learn more on nth term of an AP here: https://brainly.com/question/19296260
#SPJ1
By definition, we have
[tex]f(n) = f(n - 1) + f(n - 2)[/tex]
so that by substitution,
[tex]f(n-1) = f(n-2) + f(n-3) \implies f(n) = 2f(n-2) + f(n-3)[/tex]
[tex]f(n-2) = f(n-3) + f(n-4) \implies f(n) = 3f(n-3) + 2f(n-4)[/tex]
[tex]f(n-3) = f(n-4) + f(n-5) \implies f(n) = 5f(n-4) + 3f(n-5)[/tex]
[tex]f(n-4) = f(n-5) + f(n-6) \implies f(n) = 8f(n-5) + 5f(n-6)[/tex]
and so on.
Recall the Fibonacci sequence [tex]F(n)[/tex], whose first several terms for [tex]n\ge1[/tex] are
[tex]\{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots\}[/tex]
Let [tex]F_n[/tex] denote the [tex]n[/tex]-th Fibonacci number. Notice that the coefficients in each successive equation form at least a part of this sequence.
[tex]f(n) = f(n-1) + f(n-2) = F_2f(n-1) + F_1 f(n-2)[/tex]
[tex]f(n) = 2f(n-2) + f(n-3) = F_3 f(n-2) + F_2 f(n-3)[/tex]
[tex]f(n) = 3f(n-3) + 2f(n-4) = F_4 f(n-3) + F_3 f(n-4)[/tex]
[tex]f(n) = 5f(n-4) + 3f(n-5) = F_5 f(n-4) + F_4 f(n-5)[/tex]
[tex]f(n) = 8f(n-5) + 5f(n-6) = F_6 f(n-5) + F_5 f(n-6)[/tex]
and so on. After [tex]k[/tex] iterations of substituting, we would end up with
[tex]f(n) = F_{k+1} f(n - k) + F_k f(n - (k+1))[/tex]
so that after [tex]k=n-2[/tex] iterations,
[tex]f(n) = F_{(n-2)+1} f(n - (n-2)) + F_{n-2} f(n - ((n-2)+1)) \\\\ f(n) = f(2) F_{n-1} + f(1) F_{n-2} \\\\ \boxed{f(n) = -4 F_{n-1} - 6 F_{n-2}}[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.