Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Find where the two curves meet.
[tex]x^3 - x^2 + x + 8 = 5x^2 - 7x + 8 \\\\ \implies x^3 - 6x^2 + 8x = 0 \\\\ \implies x (x-2) (x - 4)= 0 \implies x=0, x=2, x=4[/tex]
The area between the curves is
[tex]\displaystyle \int_0^4 \left|\left(x^3-x^2+x+8\right) - \left(5x^2 - 7x + 8\right)\right| \, dx = \int_0^4 \left|x(x-2)(x-4)\right| \, dx[/tex]
When [tex]x[/tex] is between 0 and 2, [tex]x(x-2)(x-4)[/tex] is positive; when [tex]x[/tex] is between 2 and 4, [tex]x(x-2)(x-4)[/tex] is negative. So we split the integral at [tex]x=2[/tex] to get
[tex]\displaystyle \int_0^2 x(x-2)(x-4) \, dx - \int_2^4 x(x-2)(x-4)\,dx[/tex]
In the second integral, substitute [tex]y=x-2[/tex] to get
[tex]\displaystyle \int_0^2 x(x-2)(x-4) \, dx - \int_0^2 (y+2)y(y-2)\,dy[/tex]
[tex]\displaystyle \int_0^2 x(x-2) \bigg((x-4) - (x+2)\bigg) \, dx[/tex]
[tex]\displaystyle -6 \int_0^2 x(x-2) \, dx[/tex]
[tex]\displaystyle 6 \int_0^2 \left(2x - x^2\right) \, dx[/tex]
[tex]\displaystyle 6 \left(x^2 - \frac13x^3\right)\bigg|_0^2 = \boxed{8}[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.